按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
而他如果在达到90分之后,把多出来的500个学时用在一门新的课程上时,可能他又可以学出一门80~90分的技能。这时,凭什么说多两门90分的技能,对社会的价值量就不如一门95分的呢?”
冯见雄这番平易近人的说辞,顿时让无数考前突击的学渣,觉得很有亲切感。
“也对哦!已经考了90分的,想提高到95多难啊!挂科的人稍微突击几天考个60几,相对就容易很多呢!”
场上的苏勤,自然也能感受到来自观众的摇摆。
“看来,试图从‘努力量守恒’这个角度进攻的尝试,有点低估了冯见雄。”苏勤脑中如是飞速暗忖,决定微调一下。
他心念一动,转而继续往下说:“请对方辩友注意,今天我们的辩题,是一个趋势展望型的辩题,讲的是‘在目前的社会发展形势下’,通才和专才谁更吃得开。所以,如果脱离了技术环境背景来谈,就没有意义了。
我们用传媒业举例,如今互联网飞速发展,而且每一年都有增速更加迅猛的趋势。七八年前,任贤齐红遍宝岛的时候,香江那边依然在听刘德华张学友王菲。我们大陆经受的各方文化产品输入影响也比较平均,观众的头部内容喜好也没那么集中。
可是现在呢?我们可以看到,香江乐坛已经彻底没落了,男性歌手里最多有个陈奕迅勉强还在抵挡,但是有谁能跟如日中天、横扫亚洲华语乐坛的周洁伦相提并论么?很可惜,并没有。
所以,你是否承认,互联网乃至新时代传媒和其他科技的发展,正在愈来愈放大‘赢者通杀、强者愈强,第二喝汤,第三就死’的马太效应?”
“放大马太效应?这点我当然承认,可是这和今天的辩题有关系吗?”冯见雄非常敏锐而坦荡地认下了这个人畜无害的观点。
“当然有关系!”苏勤自以为得计,连忙往下说,“那你是否承认,在赢者通杀、每个细分领域只需要第一名才有活下去价值的大环境下,哪怕用1000个学时,把一门课提升到95分,也远比用同样多的时间,把两门课提高到90分更有价值?
因为一旦一个人在某一细分方面尤其是那些成果可以被无边际成本复制的方面无法做到第一,那么他的所学就是几乎没有意义的。正如一个模仿周洁伦唱歌的人,哪怕你可以学到周洁伦九成五的唱功,有价值吗?没有,这个世界只要听一个周洁伦就够了,高仿和死尸有什么区别?”
第10章 我站在上帝这边
苏勤的话,让场内的氛围为之一窒。
那是一种愤懑地无声叹息所有人的理性,在一瞬间都被苏勤描绘的可能性攫取了过去,觉得他说的有道理。
但潜意识里,大家又不免排斥抗拒,因为“马太效应和互联网的结合”这个话题太沉重了每一个无法再某个最细分领域做到第一名的人,似乎都会变成毫无价值的人渣。但第一又能有多少?哪怕把评判领域分得再细,只怕这世界上都会有90%的人,在未来变成人渣吧?
所有人认同苏勤的同时,又不免比原先更加期待冯见雄的反驳。
冯见雄恰到好处地开口了:“在每个具体细分领域的头部内容提供者,会被马太效应放大其优势,而第二名哪怕只比第一名差5%,都会变得毫无价值这个判断,总体上来说,是没有问题的。”
他先概括了一下对方的描述,把要辨析的重点突出来,然后话锋一转,重点解剖,
“但是,请对方辩友注意,你的这个假设只是存在于理想状态。事实上现实生活中可以依靠单一评价指标达到某一细分领域第一名的人我们可以假设他们都是‘专才’只是极少数;他们为社会创造的价值和贡献,与人类社会所创造的总价值相比,所占的比例也是微不足道的。
哪怕将来传播和复制的技术再发达,以至于传播和复制的物理成本降为零。那时候的人类自然有充分的个性化、差异化需求被发掘出来,变得越来越挑剔这时候,为社会创造主流价值的,就依然是个性化、综合化的通才……”
冯见雄说到这儿,终于把这段话的总结概括了出来。
一直隐忍等待的苏勤,也终于逮住机会,果断发动了反击:“你这套理论只是空口无凭。你一方面承认了两类价值创造体系的并存,另一方面又举不出任何全局数据证据,只会铁口直断说其中一方面是主流,这也太不负责任了吧?”
冯见雄毫不相让:“全局的统计数据,目前确实是没有并不是我不想搜集,而是基于现有技术,任何国家的统计部门都不可能完成这种统计。但我们作为展望未来的辩手,就应该学会通过看具体的例子和趋势,来作出正确的展望。
现代科技社会下,能够靠堆砌时间和精力,慢慢磨砺精益求精的行业,还普遍吗?或许,你可以学小野二郎包60年寿司,或者学早乙女哲哉炸50年天妇罗,最后做料理做出工匠精神来,把一项98分的技能提高到100分但是这样的行业又有多少?
目前我们看到更多的,是一个行业所需的从业者技能,以空前快速的频次迭代,一个学了c++的人可能三年内就要改行学java了。一个苦练微操的星际争霸选手,因为暴雪一次改版,几年苦练就连个屁都不值了。这样的时代,你让大多数人都把时间浪费在泡茶做饭一做就是50年、悟道求精上面,不是误人子弟么。”
苏勤立刻反唇相讥:“对方辩友又在偷换概念刚才我方在立论时已经说过,任何学新技能所需的前置技能,都是专才所应当具备的素质。
专才并不是空中楼阁,c++对于学java是有意义的,一个学过c++的改行学java肯定比一个什么编程语言都不懂的纯萌新更快,更能掌握其中的思想神髓。一个学过高数线代复变的人,学自动控制原理也肯定比没学过高数的人牛逼。而到了对方辩友嘴里,这种积累沉淀都成了毫无价值,不是太可笑了么?”
苏勤和冯见雄的交锋,让场面一度胶着起来。
其他几个辩手,在这一过程中免不了也偶尔插话,让主力能有些休息的机会。
往往虞美琴、南筱袅刚刚一句“现代科技进步速度已经让大多数前沿创造性工作者必须终生学习,不可能指望磨砺一方面技能就吃一辈子”甩过去;
对面米苏丽、牛泽茜就用诸如“终生学习并不等于放弃专精的存量知识,完全另起炉灶”的台词怼回来。
随着交锋的深入,话题的核心攻防要点被渐渐聚焦,已然没什么迂回的余地。
冯见雄缓过气之后,对最终的堡垒发起了图穷匕见的总攻。
当然,他毫不犹豫地利用自己对未来的先知先觉,作了个弊这没什么好讳言的。毕竟他比苏勤更知道未来的社会需要什么样的人,科技的进步会把人类价值的评判体系逼到怎样的墙角。
“请问苏学长,你听说过谷歌公司已经投资了一个名叫杰夫辛顿的多伦多大学教授的研究所了么?如果没听说过,我现在可以告诉你,他就在最近这两年,发明了一种叫做‘深度学习算法’型的人工智能路线。
虽然目前的应用并不是很多,但国内已经有公司基于这种算法思想,作出可以统计每个人打字词频的新式智能拼音输入法了。而谷歌公司也已经用这种算法思想,开始布局教机器人下围棋、作套路化风格的曲子、甚至是作诗……”
苏勤感受到一丝危险,但立刻用辩题相关性的质疑,试图阻止冯见雄随口扯开话题:“那又怎么样?这和今天的辩题毫无关系。”
“有关系,因为我可以拿出证据,基于这种技术,未来的人类如果想靠‘慢工细活地打磨’和机器竞争,那么人类毫无胜算。谷歌公司的下棋机器人虽然至少还要5年才能做出来,但是他们已经定下了‘蒙特卡罗树状训练’的逻辑基础。
未来这样被设定了单一目标的机器人,可以用每天晚上自己跟自己左右互搏下100万盘围棋、并统计每一种不同下法不同应对的胜率变化,从而自我进化。到时候人类的围棋世界冠军,恐怕会和97年卡斯帕罗夫倒在ibm的‘深蓝’手下时一样惨。”
“这种状态,你们目前恐怕很难想象,因为目前我们和电脑在竞技领域的交锋似乎只有打魔兽和dota的人机对战哪怕设置最高级难度,电脑也只是靠更多的血量、攻击力和金钱采集速度,来获得对人类的优势。
除此之外,或许还有电脑那始终妙到毫巅的微操作电脑在玩魔兽的时候,看到某一个兵血量下降过快,会自动把它往后拖一下,短暂脱离战线直到对方的近战单位转而去攻击其他血还比较多的。这样的操作人类高手要训练很久才能做到,而且受限于手速很难多线同时这样操作。但对于电脑来说,哪怕地图上同时有100个地方在战斗,它也可以同时微操100个战场。
但是未来呢?电脑或许就是直接在战术或者战略层面的ai碾压人类玩家了只要那个用于打游戏的深度学习型人工智能,在被设定时的唯一目标,就是‘用尽一切手段获胜’。到时候机器可以先学习一番训练集,获得基础的强度,然后用蒙特卡洛树状训练结构左右互搏几千万局,把胜负趋势变化牢记在心这时候,那些技能囤积型的人类选手,还有什么价值?
或者说,就算他们还有价值,还有人类观众愿意看他们打比赛,也不是因为‘他们打得比机器好或者比机器差’而是因为他们还是一个人,因为他们和机器不同的‘人’属性,为他们博得了同情分。他们是在依靠自己的专才以外的能力,获取自己的价值和尊严。”
蒙特卡洛树状训练模式,在如今这个地球上,已经被提出来了么?或许吧,查查艰深晦涩的学术专著,应该是可以看到的。
所以冯见雄也不算造谣。
至于谷歌公司还有没有开始这么干,把这玩意儿用于商业项目的研究,鬼知道呢。
这东西是商业机密,所以只要学术上存在,冯见雄这么说就没毛病。
等将来谷歌真干成了,人类也只会惊叹冯见雄先知先觉,知微见著。
不过,苏勤肯定是不会死心的。
他也犯不着正面硬刚跟冯见雄讨论黑科技只要表现出自己适度的不屑就行了。
“呵呵”苏勤冷哼了一声,停顿数秒好让听众们的注意力都被吸引过来,“什么时候连科幻小说里的胡乱猜测,都能作为辩论的证据了?你说‘这种最新的人工智能在做任何单一目标的事情时肯定可以做到比人好’,有证据吗?
机器的性能替代人类技能,自古以来无非是在那些简单重复或者追求精准度的工种上。或许那些以‘精确、力量、灵敏’为追求的人类‘专才’,其价值确实会被机器消灭和替代。但原创性的、研究性的工作呢?机器只能复制人类的行为模式,难道还能主动创造不成?”
冯见雄微笑了一下,拿出一本《连线》杂志。
那是最近几个月刚刚发表的,上面应该都是前沿科技成果。
在06年,在深度学习算法诞生还不到两周年的萌芽时期,要想找出一些“阿尔法狗“级别的铁证,还真是不容易。
不过,并不是完全没有。
至少facebook公司,已经搞出一个可以代替人类美工师修图的软件雏形。几年之后,这种东西就会泛滥,然后成为智能版的、可以自动修图的“美图秀秀”一类东西。
而且,冯见雄也不是第一次在校内的辩论赛上提及“深度学习人工智能”去年的比赛中,他已经提过一次了,后来还被校台女主播丁理慧采访做过一次专门的展望节目,跟同学们探讨未来人才需要哪些技能属性的问题。
只不过,冯见雄每次提到人工智能,都能从不同的切入点和角度,说出很多新花样来。
所以,今天再提及,无论是对面的苏勤,还是场上的评委,多少都容易判断冯见雄说的是不是真的。
手里拿着杂志,冯见雄提问:“请问对方辩友,画家的工作,是不是创造性的劳动注意,我问的是画家,是为了艺术性目的而作画的,并不纯粹是为了‘画得像’,所以不要拿照相技术反驳我。”
“画家的工作当然是原创性的。”苏勤也不觉得这里有什么问题。
冯见雄继续紧逼:“那么,用ps帮人类修饰、艺术处理照片的工作,是不是也是创造性的?”
苏勤感受到了一丝危险,犹豫了一下后还是咬牙肯定:“当然也是,但这有什么关系么?”
“那很抱歉,我想我不得不告诉你只要一项工作的评判标准是单一的、目标是客观、确定的,那么未来机器都可以替代和消灭人类。”
他把杂志翻到某一页折了一道褶皱的位置,招摇地晃了一晃。
第11章 努力者的末日
“众所周知,人类对社会的价值,和他创造的使用价值几乎毫无关系,只和他技能、资源的稀缺性有关系。
人人都需要吃饭,但农民的地位依然卑微,这就是因为农民太多,他们没法干掉所有和自己技能树重叠的个体,从而制造自己的稀缺性。
所以,我们讨论专才和通才在未来社会哪个更重要、更吃得开时,不光要从人类社会自身看,还要从‘哪一类人更容易被机器消灭和替代’来看。
目前来看,随着深度学习的诞生,那些‘用50个学时就能把一门课学到90分,用100个学时就能把两门课都学到90分,但哪怕300个学时也不能把任何一门课学到98分的博而不精者’,在未来会远远比那些‘用50个小时只能学到75分,但是砸300个小时能磨到98分的单一目标专精者’更吃香。
因为如果靠比努力,靠磨,血肉之躯的人类,怎么可能比机器努力?曾经的机器,只能‘执行’,不能‘学习’,所以人类中的‘只有努力一项优势’的人还有活着的价值。而一旦机器也学会了‘学习’,人类当中的‘只懂努力’的人,就败给了机器。
这也是为什么现在的创新型科技公司招聘研发人才时,越来越看重学习能力、学习速度而非知识存量。就算一个专才可以用3年磨一剑的时间,把一项技能磨砺到98分,又如何?知识更新换代太快,还没磨到90分,前面学的都已经过时淘汰了。
科技创新公司只需要一个月就能上手一门新技能、并且在及格分线上跑起来,然后快速迭代就行了。至于专精的工匠精神者,你们就继续去做寿司或者炸天妇罗好了。
那么,深度学习型人工智能和人类相比,它们的劣势在哪儿呢?就在于每一项人工智能只能被设定一个奋斗目标。比如谷歌公司目前立项做的一个名叫‘阿尔法狗’的机器人下围棋项目,它只能被设定‘赢得围棋’这一个目标,然后一切进化以实现这个目标为准。每自己下一盘,胜率高了就统计学习,胜率低了就回避。你要他同时把围棋下得漂亮美观有观赏性,它是做不到的。
而人类和机器相比,最后一道底线,就在于人类有多重价值观,有多重兴趣,人类而已去做那些看上去漫无目标、或者对实现当前主目标毫无效率的‘不划算’的事情。这时候,我们才能看到多重目标之间跨圈权衡带来的思想碰撞、价值创新。这也是为什么如今创业界的机会大量在跨圈节点出现……”
作为正方,冯见雄的总结陈词是在苏勤之后发表的。